

超低功耗三通道低频无线唤醒 ASK 接收芯片

产品特性

● 功能特点

- 三个独立天线通道: X/Y/Z 轴

- 载波频率范围: 30~300kHz

- 最远唤醒距离:大于 10m

- Pattern: 码值和长度可配置

- 接收数据:可通过 SPI 或 I2C 读取(最长 8

字节), 或通过 IO 输出

● 超低功耗

- 三通道轮询扫描模式: 2.9μ A

- 三通道间歇运行模式: 2.1μ A

- 单通道间歇运行模式: 1.7μ A

● 接收

- 接收灵敏度: 70 μ Vrms (typ.)

- 接收灵敏度可调节:天线阻尼

- 支持数据率: 1~8kbps

- 支持误触发计数

● LC 天线

- 支持内部自动调谐

- 支持外部辅助调谐

● 编码方式

- 支持曼彻斯特编码方式

● 时钟

- 内部集成高精度 RC 振荡器

- 无需校准

- 支持外部无源晶振

- 支持外部输入时钟

● 工作模式

- 标准监听模式:多通道持续运行

- 轮询扫描模式: 多通道轮询扫描运行

- 间歇运行模式:多通道间歇运行

● 接口

- SPI: Mode0, 速率最高 8Mbps

- I2C: 速率最高 400kbps

- 支持外部复位

● 电气参数

- 工作电压: 2~3.6V

- 工作温度: -40~85℃

- ESD 保护: ±4kV (HBM)

● 开发支持

- SDK: 软件、文档、工具、参考设计

- EVB 硬件开发板

- 发射器

● 选型

类型	型 号
001 tt 0	UM2020-NSQD (QFN16)
SPI 接口	UM2020-NSTD (TSSOP16)
120 拉口	UM2020-NIQD (QFN16)
│I2C 接口	UM2020-NITD (TSSOP16)

UM2020 数据手册 产品概述

1 产品概述

UM2020 是一款三通道、超低功耗的 ASK 接收芯片,可检测 30~300KHz 范围的 LF(低频)载波频率数据并触发唤醒信号,唤醒之后 MCU 可通过 IO 实时采集后续接收到的数据,也可以通过 SPI 或 I2C 直接从寄存器读取(最多保存 8 字节数据)。三个独立通道可以配置成不同的唤醒模式,每个通道都具有 RSSI检测功能。UM2020 内部集成时钟信号发生器,时钟源可来自于内部 RC 振荡器、外部输入时钟或晶体振荡器(外挂无源晶振)。内部 RC 振荡器已校准到 32KHz,用户无需进行外部校准就能让芯片发挥出最佳性能。该芯片支持多种数据率的配置,支持曼彻斯特编码方式。

UM2020 可对多种唤醒模式进行配置,还可以调节接收灵敏度,确保在各种应用环境下能实现可靠唤醒。内部集成 LC 振荡器,方便用户对 LC 天线的谐振频率进行调节,从而获得最佳性能,LC 天线调谐支持内部自动校准(默认)和外部辅助校准两种模式。

应用场景:

- ▶ PKE 无钥匙门禁系统
- 智能交通,智慧城市,智能家居
- > 智能门锁,资产追踪、无线监控等智能传感器终端应用

UM2020 数据手册 功能框图

2 功能框图

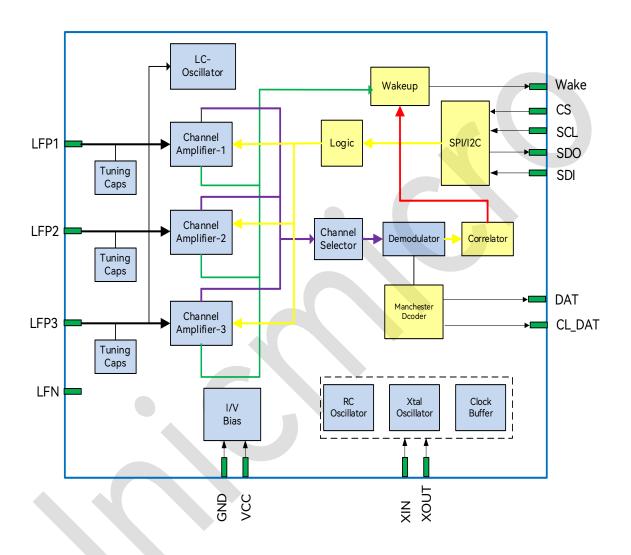


图 2-1: 功能框图

UM2020 数据手册 封装及管脚描述

3 封装及管脚描述

3.1 封装管脚分布

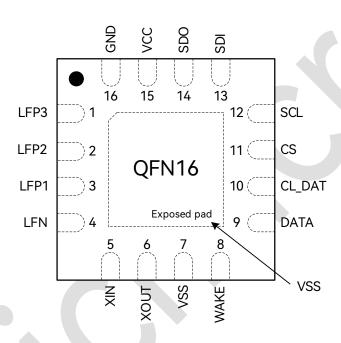


图 3-1: QFN16 封装管脚分布图

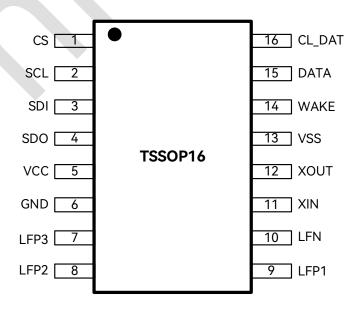


图 3-2: TSSOP16 封装管脚分布图

UM2020 数据手册 封装及管脚描述

3.2 引脚功能描述

表 3-1: 引脚功能说明

封装引	脚编号	310tn & 15	10 T	T4, AK, 441 \4
QFN16	TSSOP16	引脚名称	Ю Туре	功能描述
0	-	VSS	G	芯片地(LF PAD)公共地
1	7	LFP3	Al	通道3天线输入
2	8	LFP2	Al	通道2天线输入
3	9	LFP1	Al	通道1天线输入
4	10	LFN	Al	通道共用地
5	11	XIN	Al	晶振输入
6	12	XOUT	Al	晶振输出
7	13	VSS	G	芯片地
8	14	WAKE	DO	唤醒中断信号输出
9	15	DATA	DO	数据输出
10	16	CL_DAT	DO	时钟输出
11	1	CS	DI	片选信号
12	2	SCL	DI	SPI/I2C 时钟信号
13	3	SDI	DI	SPI 数据输入
14	4	SDO	DIO	SPI 接口数据输出/I2C 接口数据输入输出
15	5	VCC	Р	电源
16	6	GND	G	地

注: A - 模拟信号; D - 数字信号; I - Input; O - Output; G - Ground; P - Power。

3.3 接口引脚说明

表 3-2: 接口引脚说明

引脚名称	UM2020-NSQD	UM2020-NSTD	UM2020-NIQD	UM2020-NITD
21114b H 107	(QFN16)	(TSSOP16)	(QFN16)	(TSSOP16)
CS	Υ	Υ	/	/
SCL	Υ	Υ	Υ	Υ
SDI	Υ	Υ	/	/
SDO	Υ	Υ	Υ	Υ

UM2020 数据手册 电气参数

4 电气参数

4.1 绝对最大额定值

外部条件如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受永久性损坏的最大载荷,并不意味着在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号 描述 最小值 最大值 单位 V_{DD} 供电电压 -0.3 ٧ 3.6 150 °C 存储温度 -50 T_{stg} -100 100 Latch up 电流 mΑ I_{LATH} 4 **ESD** 静电放电 -4 kV

表 4-1: 绝对最大额定值

4.2 工作条件

除非特别说明外,TA=25°C,Fin=125kHz,VDD=3.3V,GBOOST=1

4.2.1 通用工作条件

表 4-2: 通用工作条件

符号	参数以及条件	最小值	典型值	最大值	单位
V_{DD}	电源电压	2	3.3	3.6	V
T _A	工作温度	-40	-	85	°C
R _{in}	交流输入阻抗(125KHz)	-	2	-	ΜΩ
F	载波频率	30	1	300	kHz

UM2020 数据手册 电气参数

4.2.2 功耗

表 4-3: 工作模式下功耗

符号	参数以及条件	最小值	典型值	最大值	单位
I1CHOORC	1 个通道和 RC 振荡器开启, 12.5% duty 间歇运行模式	_	1.7	ı	μΑ
I3CHOORC	3 个通道和 RC 振荡器开启, 12.5% duty 间歇运行模式	-	2.1	1	μΑ
I1CHRC	1 个通道和 RC 振荡器开启,标准监听模式	-	2.9	-	μΑ
SPIHRC	2 个通道和 RC 振荡器开启,标准监听模式	-	4.2	-	μΑ
I3CHRC	3 个通道和 RC 振荡器开启,标准监听模式	-	5.6	1	μΑ
I3CHXT	3 个通道和晶体振荡器开启,标准监听模式	-	6.5		μΑ
I3DATA	3 个通道和 RC 振荡器开启,对码检测使能和数据接收		/, E		^
	模式	_	4.5	ı	μΑ

4.2.3 接收灵敏度

表 4-4: 接收灵敏度

符号	参数以及条件	最小值	典型值	最大值	单位
SEN	接收灵敏度	-	70	-	μ VRMS

4.2.4 通道建立时间

表 4-5: 通道建立时间

符号	参数以及条件	最小值	典型值	最大值	单位
t _{SAMP}	放大器稳定时间	-	250	-	μs

4.2.5 晶体振荡器

表 4-6: 晶体振荡器

符号	参数以及条件	最小值	典型值	最大值	单位
F _{XTAL}	频率	25	32.768	45	kHz
t _{XTAL}	启动时间	-	-	1	S
I _{XTAL}	消耗电流	-	300	-	nA

UM2020 数据手册 电气参数

4.2.6 外部时钟源

表 4-7: 外部时钟源

符号	参数以及条件	最小值	典型值	最大值	单位
I _{EXTCL}	消耗电流	-	0.8	-	μΑ
F _{EXTCL}	频率	25	-	45	kHz

4.2.7 RC 振荡器

表 4-8: RC 振荡器

符号	参数以及条件	最小值	典型值	最大值	单位
F _{RCCAL32}	-	30	32	34	kHz
t _{RC}	启动时间	-	-	1	S
I _{RC}	消耗电流	-	300	-	nA

4.2.8 LC 振荡器

表 4-9: LC 振荡器

符号	参数以及条件	最小值	典型值	最大值	单位
F _{LCOM}	频率	30	-	300	kHz
R _{PARMIN}	最小等效并联电阻	-	10	-	kΩ

4.2.9 10 特性

表 4-10: IO 特性

符号	参数以及条件	最小值	典型值	最大值	单位
V _{IH}	高电平输入	0.6*V _{DD}	ı	V_{DD}	V
V _{IL}	低电平输入	0	1	0.3*V _{DD}	V
I _{LEAK}	输入漏电流	-	-	100	nA
V _{OH}	高电平输出(1mA 负载电流)	V _{DD} -0.4	-	-	V
V _{OL}	低电平输出(1mA 负载电流)	-	-	V _{SS} +0.4	V

UM2020 数据手册 功能模块

5 功能模块

5.1 工作模式

芯片在正常工作模式下,只有被使能并处于监听模式下的通道放大器和时钟发生器在运行,其它模块处于关闭状态。在监听模式下,如果监测到特定频率的载波信号,则开启 RSSI 测量,并把结果存储在相应的寄存器中。

5.1.1 标准监听模式

多通道持续运行,三个通道可独立配置使能,使能的通道会一直处于监听接收状态。

5.1.2 轮询扫描模式

多通道轮询扫描运行,三个通道可独立配置使能,使能通道会按照定义的时间窗口 T 运行扫描监听,在每个时间窗口只能有一个通道处于接收状态。当时间窗口结束时,当前使能的通道被关闭,下一个通道将被开启,并以此类推。一旦检测到载波信号,所有使能的通道都会被同时激活,芯片将把 RSSI 值最强的通道接入后面的解调器。通过单通道的电流消耗进行多方向的检测,降低功耗的同时保证可靠监听。

5.1.3 间隙运行模式

多通道间歇运行,三个通道可独立配置能使,使能的通道会按照定义的时间窗口内,同时开启所有使能的通道,并在下一个时间段中同时关闭所有使能通道。

UM2020 数据手册 功能模块

5.2 对码检测使能

在对码匹配使能的条件下,芯片检测到 LF(低频)载波之后,对码匹配模块开始搜索前导码,然后开始匹配对码。如果对码匹配成功,则唤醒中断信号通过 WAKE 输出高电平,然后进入数据接收模式。如果对码匹配失败,则终止内部唤醒,重新进入监听模式。

如果对码匹配使能被禁用,芯片在检测到 LF(低频)载波之后会直接唤醒并进入数据接收模式。

5.3 数据接收

芯片成功唤醒之后,芯片就会进入数据接收模式,此时,芯片相当于一个普通的 ASK 接收机。接收到的数据会被存入缓冲寄存器中,最多可存储 8 个字节的数据,MCU 可以通过 SPI 或 I2C 读取接收到的数据,也可以在接收过程中通过 DATA/CL_DAT 管脚实时采集数据。

5.4 运行状态图

图 5-1: 运行状态图

UM2020 数据手册 参考原理图

6 参考原理图

6.1 QFN16

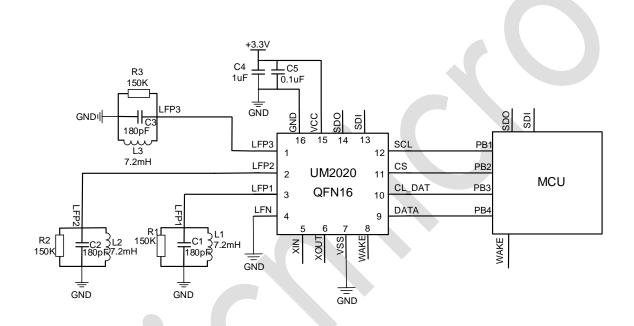


图 6-1: QFN16 参考原理图

UM2020 数据手册 参考原理图

6.2 TSSOP16

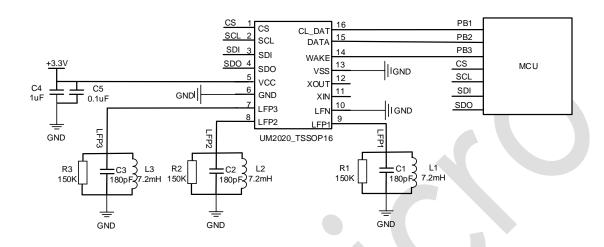
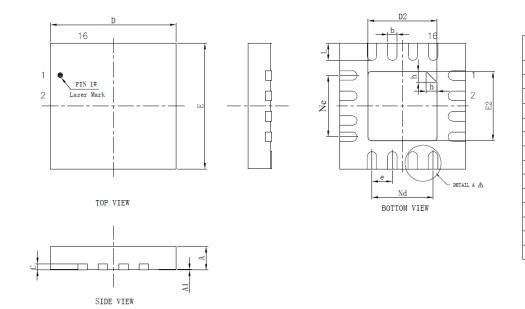
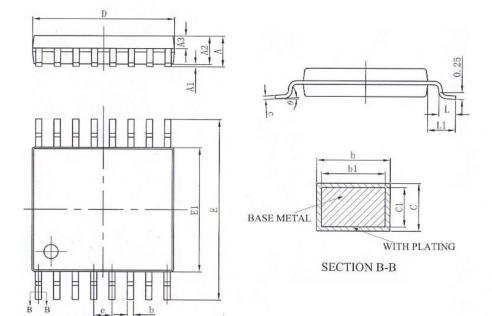



图 6-2: TSSOP16 参考原理图

UM2020 数据手册 封装尺寸

7 封装尺寸

7.1 QFN16 (4*4mm)



SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A	0.70	0.75	0.80
A1	_	0.02	0.05
b	0. 25	0.30	0. 35
с	0.18	0.20	0. 25
D	3. 90	4. 00	4. 10
D2	2.10	2. 20	2.30
e	0. 650BSC		
Ne	1. 95BSC		
Nd	1.95BSC		
E	3. 90	4. 00	4. 10
E2	2. 10	2. 20	2.30
L	0. 45	0.55	0.65
h	0. 30	0.35	0. 40
UF载体尺寸	98*98		

图 7-1: QFN16 封装尺寸图

UM2020 数据手册 封装尺寸

7.2 TSSOP16 (5*4.4mm)

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A	_	_	1.20
Al	0.05	_	0.15
A2	0.90	1.00	1.05
A3	0.39	0.44	0.49
b	0.20	_	0.28
b1	0.19	0.22	0.25
c	0.13		0.17
cl	0.12	0.13	0.14
D	4.90	5.00	5.10
Е	6.20	6.40	6.60
E1	4.30	4.40	4.50
e	0.65BSC		
L	0.45	0.60	0.75
LI	1.00BSC		
θ	0		8°

图 7-2: TSSOP16 封装尺寸图

UM2020 数据手册 版本维护

8 版本维护

版本	日期	描述
V1.0	2021.8.18	初始版
V1.1	2021.12.20	整理版式、更新部分参数
V1.2	2022.05.27	更新 QFN16 封装尺寸图
V1.3 2023.11.02	2022 11 02	更新管脚分布图;
	2023.11.02	新增"参考原理图"章节。
V1.4	2025 02 07	首页概述内容调整与后文一致,"接收灵敏度"由"< 70 μ Vrms"改为"70
	2025.03.07	μ Vrms (typ.)"。

UM2020 数据手册 联系我们

9 联系我们

公司: 广芯微电子(广州) 股份有限公司

地址:

广州: 广州市黄埔区科学大道 18 号芯大厦 B2 栋 12 楼

邮编: 510700

电话: +86-020-31600229

上海: 上海市浦东新区祖冲之路 1077 号 2 幢 5 楼 1509 室

邮编: 201210

电话: +86-021-50307225

Email: sales@unicmicro.com
Website: www.unicmicro.com

本文档的所有部分,其著作产权归广芯微电子(广州)股份有限公司(以下简称广芯微电子)所有, 未经广芯微电子授权许可,任何个人及组织不得复制、转载、仿制本文档的全部或部分组件。本文档没有 任何形式的担保、立场表达或其他暗示,若有任何因本文档或其中提及的产品所有资讯所引起的直接或间 接损失,广芯微电子及所属员工恕不为其担保任何责任。除此以外,本文档所提到的产品规格及资讯仅供 参考,内容亦会随时更新,恕不另行通知。